Small amplitude solitary waves in the Dirac-Maxwell system
Autor: | Andrew Comech, David M. A. Stuart |
---|---|
Rok vydání: | 2018 |
Předmět: |
Physics
Computer Science::Information Retrieval Applied Mathematics Dirac (video compression format) 010102 general mathematics General Medicine Electron Klein paradox 01 natural sciences Implicit function theorem symbols.namesake Dirac equation 0103 physical sciences Bound state symbols 010307 mathematical physics 0101 mathematics Ground state Wave function Analysis Mathematical physics |
Zdroj: | Communications on Pure & Applied Analysis. 17:1349-1370 |
ISSN: | 1553-5258 |
DOI: | 10.3934/cpaa.2018066 |
Popis: | We study nonlinear bound states, or solitary waves, in the Dirac-Maxwell system, proving the existence of solutions in which the Dirac wave function is of the form \begin{document}$φ(x,ω)e^{-iω t}$\end{document} , with \begin{document}$ω∈(-m,ω_ *)$\end{document} for some \begin{document}$ω_ *>-m$\end{document} . The solutions satisfy \begin{document}$φ(\,·\,,ω)∈ H^ 1(\mathbb{R}^3,\mathbb{C}^4)$\end{document} , and are small amplitude in the sense that \begin{document}${\left\| {φ(\,·\,,ω)} \right\|}^2_{L^ 2} = O(\sqrt{m+ω})$\end{document} and \begin{document}${\left\| {φ(\,·\,,ω)} \right\|}_{L^∞} = O(m+ω)$\end{document} . The method of proof is an implicit function theorem argument based on the identification of the nonrelativistic limit as the ground state of the Choquard equation. This identification is in some ways unexpected on account of the repulsive nature of the electrostatic interaction between electrons, and arises as a manifestation of certain peculiarities (Klein paradox) which result from attempts to interpret the Dirac equation as a single particle quantum mechanical wave equation. |
Databáze: | OpenAIRE |
Externí odkaz: |