Metal and phospholipid binding properties of partially carboxylated human prothrombin variants

Autor: Barbara C. Furie, M Borowski, Bruce Furie, G H Goldsmith
Rok vydání: 1985
Předmět:
Zdroj: Journal of Biological Chemistry. 260:9258-9264
ISSN: 0021-9258
DOI: 10.1016/s0021-9258(17)39361-4
Popis: To study the specific role of gamma-carboxyglutamic acid (Gla) residues in prothrombin, we have isolated a series of partially carboxylated prothrombin variants from a patient with a hereditary defect in vitamin K-dependent carboxylation (Goldsmith, G. H., Pence, R. E., Ratnoff, O. D., Adelstein, D. A., and Furie, B. (1982) J. Clin. Invest. 69, 1253-1260). The three variant prothrombins, purified by DEAE-Sephacel, immunoaffinity chromatography, and preparative gel electrophoresis, were indistinguishable from prothrombin in molecular weight, amino acid composition, and NH2-terminal amino acid sequence, with the exception of Gla residues. Variant prothrombin 1, with 8 Gla residues, had 66% of the coagulant activity of prothrombin, one high affinity metal-binding site (Kd = 15 nM), and three lower affinity sites (Kd = 2.7 microM); prothrombin contained two high affinity (36 nM) and four lower affinity sites (Kd = 1 microM). Ca(II) induced a 23% decrease in the intrinsic fluorescence of variant prothrombin 1 fragment 1, compared to a 35% decrease in that of prothrombin fragment 1. The phospholipid binding activity of variant prothrombin 1 was 44% that of prothrombin. Variant prothrombin 2 and variant prothrombin 3, with 4 and 6 Gla residues, respectively, had about 5% of prothrombin coagulant activity and a single high affinity and two lower affinity metal-binding sites and exhibited no phospholipid binding activity. Variant prothrombin 3 fragment 1 and variant prothrombin 2 fragment 1 demonstrated 18 and 13% of Ca(II)-induced fluorescence quenching, respectively. Abnormal prothrombin, with 1 Gla residue, had 8% of prothrombin coagulant activity, a single lower affinity (1 microM) metal-binding site, and 13% Ca(II)-induced fluorescence quenching of the fragment 1 species and did not bind to phospholipid. These results indicate that Gla residues define the metal binding properties of prothrombin. Most, if not all, of the Gla residues are required for complete prothrombin function, and the prothrombin coagulant activity correlates to the phospholipid binding activity of the prothrombin species.
Databáze: OpenAIRE