STUDY OF THE VIABILITY OF ALEPPO PINE TREES BY USING PHF INDEX

Autor: Mokhtar Adjadj, Haddad Amar, Badri Boukous, Rached-Kanouni Malika, Walid Medjoub
Rok vydání: 2021
Předmět:
Zdroj: GEOLINKS Conference Proceedings.
ISSN: 2603-5472
DOI: 10.32008/geolinks2021/b2/v3/24
Popis: This work, which was conducted in the Chettaba forest about the viability of the stands can be given by the PHF index, a three-digit index that gives a judgment of the position of the tree (in relation to the others and thus indicating the dominance and the stage of competition or exposure to the dominant stage), of the general shape of the crowns, and of the shape of the shafts, it allows a more detailed silvicultural interpretation to predict the future of the stand and ultimately deduce the viability of the stands. Thus, there is an essential need for a study to be conducted in this regard to understand the existing problems and to bring about proposals on the appropriate intervention in logged surface. The slenderness coefficient of a tree is defined as the ratio of the total height (H) to the diameter at 1.3 m above ground level (d). For the stand level, the slenderness coefficient is calculated using the root mean square diameter and the average tree height as (H/D). It is well known that there is a direct relationship between the stand slenderness coefficient and the risk of stem breakage. It is well known that there is a direct relationship between the stand slenderness coefficient and the risk of stem breakage or tree fall due to abiotic factors such as wind or snow. Sustainability monitoring is crucial to the credibility, validation, value of the options implemented and should be considered early on in the planning process this allows us to say that these stands are stable in the forest and always in the 6 plots studied. Analyses results show a mid-viability for the forest and more of individual listed present instability which is indicated by a medium stability of forests stand’s quality (PHF = 123) and a slenderness coefficient (H/D = 34.47).
Databáze: OpenAIRE