Edge Detection in Pipe Images Using Classification of Haar Wavelet Transforms
Autor: | Mike Rahilly, Donavan Marney, Brad Lane, John Mashford, Stewart Burn |
---|---|
Rok vydání: | 2014 |
Předmět: |
Morphological gradient
Pixel Physics::Instrumentation and Detectors Computer science business.industry Detector ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Pattern recognition Deriche edge detector Edge detection Haar wavelet Artificial Intelligence Computer Science::Computer Vision and Pattern Recognition Canny edge detector Computer vision Artificial intelligence business Image gradient |
Zdroj: | Applied Artificial Intelligence. 28:675-689 |
ISSN: | 1087-6545 0883-9514 |
DOI: | 10.1080/08839514.2014.927689 |
Popis: | Automatic image interpretation for pipe inspection is a relatively recent area of research, which has great potential benefit. An important component of such systems is crack detection, or, more generally, edge or discontinuity detection. This paper describes a new approach to edge detection and applies it to pipe images. The method labels each pixel in an image as an edge pixel or a nonedge pixel by processing the Haar wavelet transform of the image in a window about the pixel using a support vector machine. As a pixel classifier, to within a moderate morphological tolerance, the detector has an accuracy of 99% on the images on which it has been tested and compares favorably with the commonly used Canny edge detector. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |