Popis: |
Purpose The evaluation of novel materials such as the acrylonitrile styrene acrylate (ASA) for tribological and mechanical conditions can provide a structural protection against the environmental and wear effects that results in the long-term integrity of the 3 D printed parts. Results of the experimental stage are intended to identify the influence of the printing conditions on the functional characteristics of ASA parts that results in variations of the friction coefficient, wear rate and tensile response. In addition, this study aims to highlight the relevance of printing parameters to avoid the use of chemical post-processing stages, increasing the performance and sustainability of the process. Design/methodology/approach In this research, an evaluation of the influence of printing parameters of layer thickness and temperature on the mechanical and tribological response have been carried out for ASA specimens manufactured by fused filament fabrication technology. For this purpose, a range of three different values of thickness of fused layer and three different printing temperatures were combined in the manufacturing process of tests samples. Mechanical behavior of the printed parts was evaluated by standard tensile tests, and friction forces were measured by pin-on-disk tribological tests against steel spheres. Findings Higher layer thickness of the printed parts shows lower resistance to tribological wear effects; in terms of friction coefficient and wear rate, this type of parts also presents lower tensile strength. It has been detected that mechanical and tribological behavior is highly related to the micro-geometrical characteristics of the printed surfaces, which can be controlled by the manufacturing parameters. Under this consideration, a reduction in the coefficient of friction near to 65% in the average value was obtained through the variation of the layer thickness of printed surfaces. Originality/value This research aims to fill a gap in the scientific literature about the use of specific additive manufacturing materials under dynamic contact. This paper is mainly focused on the influence of the manufacturing parameters on the tribological and mechanical behavior of a weather resistant polymer (ASA). |