Physical-chemical properties and microstructural characterization of traditional mexican chili (Capsicum annuum L.) powders

Autor: Rafael Ruíz Hernández, Adolfo Armando Rayas Amor, María de Jesús Perea Flores, Miriam Fabiola Fabela Morón, César Pérez Alonso, Mayahuel Ortega Avilés, Rigoberto Vicencio Pérez Ruíz, Marcelo Barba Bellettini, Betzabe Linares Violante
Rok vydání: 2021
Předmět:
Zdroj: Agro Productividad.
ISSN: 2594-0252
2448-7546
DOI: 10.32854/agrop.v14i9.2145
Popis: Objective: Evaluate the physical-chemical properties and characterize the microstructure of four varieties of traditional Mexican chili (Capsicum annuum L.) powders: “Arbol”, “Guajillo”, “Piquin” and “Mole ranchero” (Ancho chili). Design/methodology/approach: Physical-chemical properties of chili powders were evaluated by means of moisture content, particle size, aerated and tapped bulk density, Carr index, Hausner ratio, angle of repose (flow properties), capsaicin, and carotenoids content. Microstructure of samples was characterized by Confocal Laser Scanning Microscopy and Scanning Electron Microscopy. ANOVA analysis and Tukey test were performed to evaluate the significant statistical difference between samples at 95% of confidence level. Results: “Arbol”, “Guajillo”, “Piquin” and “Mole Ranchero” chili powders presented a cohesive behavior respect to its flow properties related to aerated and tapped bulk density, angle of repose, Carr Index, and Hausner ratio values under moisture content between 6.59-14.48 gH2O/100g d.s. “Arbol” and “Piquin” chili powders presented the higher capsaicin content, while “Guajillo” and “Mole ranchero” showed the higher carotenoids content. FTIR spectra confirmed the presence of secondary amide, phenolic groups, alkanes, and aliphatic chains that belong to capsaicin structure at specific absorption bands. Microstructure of chili powders presented particles with surface imperfections as cracks and dents, and smooth surface that influence physical-chemical and flowability properties. Limitations on study/implications: Hight moisture content affect the physical-chemical properties, flowability and microstructure of traditional Mexican chili powders. Findings/conclusions: Moisture content between 6.59 and 14.48 gH2O/100g d.s. influences the physical-chemical properties, flowability and microstructure of traditional Mexican chili powders. To improve physical-chemical properties and flowability behavior of chili powders is required that moisture content be lower than 6.59 H2O/100g d.s.
Databáze: OpenAIRE