A coprimality condition on consecutive values of polynomials

Autor: Márton Szikszai, Carlo Sanna
Rok vydání: 2017
Předmět:
Zdroj: Bulletin of the London Mathematical Society. 49:908-915
ISSN: 0024-6093
DOI: 10.1112/blms.12078
Popis: Let $f\in\mathbb{Z}[X]$ be quadratic or cubic polynomial. We prove that there exists an integer $G_f\geq 2$ such that for every integer $k\geq G_f$ one can find infinitely many integers $n\geq 0$ with the property that none of $f(n+1),f(n+2),\dots,f(n+k)$ is coprime to all the others. This extends previous results on linear polynomials and, in particular, on consecutive integers.
Databáze: OpenAIRE