A coprimality condition on consecutive values of polynomials
Autor: | Márton Szikszai, Carlo Sanna |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Bulletin of the London Mathematical Society. 49:908-915 |
ISSN: | 0024-6093 |
DOI: | 10.1112/blms.12078 |
Popis: | Let $f\in\mathbb{Z}[X]$ be quadratic or cubic polynomial. We prove that there exists an integer $G_f\geq 2$ such that for every integer $k\geq G_f$ one can find infinitely many integers $n\geq 0$ with the property that none of $f(n+1),f(n+2),\dots,f(n+k)$ is coprime to all the others. This extends previous results on linear polynomials and, in particular, on consecutive integers. |
Databáze: | OpenAIRE |
Externí odkaz: |