Critical behavior of the Lyapunov exponent in type-III intermittency
Autor: | G.A. Ponce, Mario G. Cosenza, O. Alvarez-Llamoza |
---|---|
Rok vydání: | 2008 |
Předmět: |
General Mathematics
Applied Mathematics Mathematical analysis General Physics and Astronomy Statistical and Nonlinear Physics Interval (mathematics) Lyapunov exponent Fixed point Parameter space Type (model theory) law.invention Nonlinear Sciences::Chaotic Dynamics symbols.namesake law Intermittency symbols Scaling Critical exponent Mathematics |
Zdroj: | Chaos, Solitons & Fractals. 36:150-156 |
ISSN: | 0960-0779 |
DOI: | 10.1016/j.chaos.2006.06.017 |
Popis: | The critical behavior of the Lyapunov exponent near the transition to robust chaos via type-III intermittency is determined for a family of one-dimensional singular maps. Critical boundaries separating the region of robust chaos from the region where stable fixed points exist are calculated on the parameter space of the system. A critical exponent β expressing the scaling of the Lyapunov exponent is calculated along the critical curve corresponding to the type-III intermittent transition to chaos. It is found that β varies on the interval 0 ⩽ β |
Databáze: | OpenAIRE |
Externí odkaz: |