Adiabatic decomposition of the -determinant and Dirichlet to Neumann operator
Autor: | Krzysztof P. Wojciechowski, Jinsung Park |
---|---|
Rok vydání: | 2005 |
Předmět: |
Mathematical analysis
General Physics and Astronomy Dirichlet's energy Mathematics::Spectral Theory Class number formula Semi-elliptic operator symbols.namesake Dirichlet eigenvalue Dirichlet's principle Dirichlet boundary condition Neumann boundary condition symbols Geometry and Topology Mathematical Physics Dirichlet series Mathematics |
Zdroj: | Journal of Geometry and Physics. 55:241-266 |
ISSN: | 0393-0440 |
DOI: | 10.1016/j.geomphys.2004.12.008 |
Popis: | We discuss the adiabatic decomposition formula of the ζ -determinant of a Laplace type operator on a closed manifold. We also analyze the adiabatic behavior of the ζ -determinant of a Dirichlet to Neumann operator. This analysis makes it possible to compare the adiabatic decomposition formula with the Mayer–Vietoris type formula for the ζ -determinant proved by Burghelea et al. As a byproduct of this comparison, we obtain the exact value of the local constant which appears in their formula for the case of Dirichlet boundary condition. |
Databáze: | OpenAIRE |
Externí odkaz: |