A NUMERICAL APPROACH TO UNCERTAINTY IN ROUGH LOGIC

Autor: Xiao-Li He, Yan-Hong She
Rok vydání: 2013
Předmět:
Zdroj: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 21:391-413
ISSN: 1793-6411
0218-4885
DOI: 10.1142/s0218488513500207
Popis: Rough set theory, initiated by Pawlak, is a mathematical tool in dealing with inexact and incomplete information. Numerical characterizations of rough sets such as accuracy measure, roughness measure, etc, which aim to quantify the imprecision of a rough set caused by its boundary region, have been extensively studied in the existing literatures. However, very few of them are explored from the viewpoint of rough logic, which, however, helps to establish a kind of approximate reasoning mechanism. For this purpose, we introduce a kind of numerical approach to the study of rough logic in this paper. More precisely, we propose the notions of accuracy degree and roughness degree for each formula in rough logic with the intension of measuring the extent to which any formula is accurate and rough, respectively. Then, to measure the degree to which any two formulae are roughly included in each other and roughly similar, respectively, the concepts of rough inclusion degree and rough similarity degree are also proposed and their properties are investigated in detail. Lastly, by employing the proposed notions, we develop two types of approximate reasoning patterns in the framework of rough logic.
Databáze: OpenAIRE