A 0.5 (half) overconvergent Eichler-Shimura isomorphism
Autor: | Fabrizio Andreatta, Glenn Stevens, Adrian Iovita |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Annales mathématiques du Québec. 40:121-148 |
ISSN: | 2195-4763 2195-4755 |
DOI: | 10.1007/s40316-015-0048-0 |
Popis: | In this article we construct a Galois and Hecke equivariant morphism connecting the first cohomology group on Faltings’ site of a formal strict neighborhood of the ordinary locus in a formal modular curve of level prime to p, with coefficients in the analytic distributions of a certain analytic weight k on the p-adic Tate module of the universal elliptic curve to the overconvergent modular forms of weight \(k+2\). We prove that this morphism is an isomorphism on the finite slope parts. |
Databáze: | OpenAIRE |
Externí odkaz: |