A 0.5 (half) overconvergent Eichler-Shimura isomorphism

Autor: Fabrizio Andreatta, Glenn Stevens, Adrian Iovita
Rok vydání: 2016
Předmět:
Zdroj: Annales mathématiques du Québec. 40:121-148
ISSN: 2195-4763
2195-4755
DOI: 10.1007/s40316-015-0048-0
Popis: In this article we construct a Galois and Hecke equivariant morphism connecting the first cohomology group on Faltings’ site of a formal strict neighborhood of the ordinary locus in a formal modular curve of level prime to p, with coefficients in the analytic distributions of a certain analytic weight k on the p-adic Tate module of the universal elliptic curve to the overconvergent modular forms of weight \(k+2\). We prove that this morphism is an isomorphism on the finite slope parts.
Databáze: OpenAIRE