Real orientations of Lubin–Tate spectra
Autor: | Jeremy Hahn, XiaoLin Danny Shi |
---|---|
Rok vydání: | 2020 |
Předmět: |
Homotopy groups of spheres
Pure mathematics General Mathematics Homotopy 010102 general mathematics Inverse Fixed point Mathematics::Algebraic Topology 01 natural sciences Spectral line Mathematics::K-Theory and Homology Mathematics::Category Theory 0103 physical sciences Spectral sequence 010307 mathematical physics 0101 mathematics Mathematics |
Zdroj: | Inventiones mathematicae. 221:731-776 |
ISSN: | 1432-1297 0020-9910 |
DOI: | 10.1007/s00222-020-00960-z |
Popis: | We show that Lubin–Tate spectra at the prime 2 are Real oriented and Real Landweber exact. The proof is by application of the Goerss–Hopkins–Miller theorem to algebras with involution. For each height n, we compute the entire homotopy fixed point spectral sequence for $$E_n$$ with its $$C_2$$ -action given by the formal inverse. We study, as the height varies, the Hurewicz images of the stable homotopy groups of spheres in the homotopy of these $$C_2$$ -fixed points. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |