Real orientations of Lubin–Tate spectra

Autor: Jeremy Hahn, XiaoLin Danny Shi
Rok vydání: 2020
Předmět:
Zdroj: Inventiones mathematicae. 221:731-776
ISSN: 1432-1297
0020-9910
DOI: 10.1007/s00222-020-00960-z
Popis: We show that Lubin–Tate spectra at the prime 2 are Real oriented and Real Landweber exact. The proof is by application of the Goerss–Hopkins–Miller theorem to algebras with involution. For each height n, we compute the entire homotopy fixed point spectral sequence for $$E_n$$ with its $$C_2$$ -action given by the formal inverse. We study, as the height varies, the Hurewicz images of the stable homotopy groups of spheres in the homotopy of these $$C_2$$ -fixed points.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje