Problem of Determining the Thermal Memory of a Conducting Medium
Autor: | Zh. Zh. Zhumaev, D. K. Durdiev |
---|---|
Rok vydání: | 2020 |
Předmět: |
0209 industrial biotechnology
Pure mathematics Partial differential equation General Mathematics 010102 general mathematics 02 engineering and technology Type (model theory) Inverse problem 01 natural sciences Integral equation 020901 industrial engineering & automation Kernel (image processing) Ordinary differential equation Initial value problem Contraction mapping 0101 mathematics Analysis Mathematics |
Zdroj: | Differential Equations. 56:785-796 |
ISSN: | 1608-3083 0012-2661 |
DOI: | 10.1134/s0012266120060117 |
Popis: | In the Cartesian product $$\mathbb {R}^n\times (0,+\infty ) $$ , we consider an integro-differential heat equation with an integral term of the convolution type on the right-hand side. The direct problem is the Cauchy problem about determining the temperature of a medium given a known initial heat distribution (for the zero value of the time variable $$t $$ ). The inverse problem consists in determining the kernel of the integral term based on the solution of the direct problem known at the point $$x=0\in \mathbb {R}^n$$ for $$t>0 $$ . Using the resolvent of the kernel, we reduce the inverse problem to another inverse problem more convenient for the analysis. The latter is replaced by an equivalent system of integral equations for the unknown functions,and the unique solvability of this system is proved with the use of the contraction mapping principle. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |