Disturbances in Formation of the New and Old Cortex at Changes of Conditions of Embryonic Development

Autor: K. N. Fedoseeva, Igor A. Zhuravin, N. M. Dubrovskaya, N. L. Tumanova
Rok vydání: 2003
Předmět:
Zdroj: Journal of Evolutionary Biochemistry and Physiology. 39:752-763
ISSN: 0022-0930
DOI: 10.1023/b:joey.0000023495.62441.97
Popis: Using a model of acute hypoxia during pregnancy of rats, changes in the development of old (hippocampus) and new (sensorimotor) cortex associated with disturbance of neuronogenesis have been revealed in the studied brain structures at the period of action of a pathological factor. It was found that in rats submitted to hypoxia at the 13–14th days of embryogenesis, the number of degenerating neurons (including the pyramidal ones) at various levels of chromatolysis increased since the 5th day after birth; the increase was present for the entire first month of postnatal development. In the cortex of rat pups submitted to prenatal hypoxia there were observed deformation of neuronal bodies, vacuoles in the cytoplasm, shrinkage of apical dendrites of pyramidal neurons and delayed development of the structure (time of the appearance of spikes, formation of structural elements and the size of the cells) of the nervous tissue of the brain of the rat pups exposed to prenatal hypoxia. The columnar structure of the cortex was disturbed. In hippocampus, the process of degeneration of neurons started by 2–3 days later than in the cortex; by two weeks of postnatal development a massive degeneration and death of a part of neurons were also revealed. The morphometrical analysis showed a decrease in the number of neurons and their total area in the sensorimotor cortex (the layer V) and an increase in the number of glial elements at the 10–17th days after birth. In the hippocampus a decrease in the area occupied by neurons and in their size was detected in adult animals. The adult rats submitted to prenatal hypoxia were found to have disturbances of memory and learning. A correlation was shown between the disturbances of the conditions of embryonic development and the changes in the ability of learning and storage of new skills in the offspring.
Databáze: OpenAIRE