Recursive Moving Frames for Lie Pseudo-Groups
Autor: | Francis Valiquette, Peter J. Olver |
---|---|
Rok vydání: | 2018 |
Předmět: |
Applied Mathematics
010102 general mathematics Structure (category theory) Lie group 010103 numerical & computational mathematics Topology Differential operator 01 natural sciences Algebra Mathematics (miscellaneous) Moving frame Maurer–Cartan form Differential invariant ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION Equivariant map 0101 mathematics Differential (infinitesimal) Mathematics |
Zdroj: | Results in Mathematics. 73 |
ISSN: | 1420-9012 1422-6383 |
DOI: | 10.1007/s00025-018-0818-5 |
Popis: | This paper introduces a new, fully recursive algorithm for computing moving frames and differential invariants of Lie pseudo-group actions. The recursive method avoids unwieldy symbolic expressions that complicate the treatment of large scale applications of the equivariant moving frame method. The development leads to novel results on partial moving frames, structure equations, and new differential operators underlying the moving frame construction. In particular, our methods produce a streamlined computational algorithm for determining moving frames and differential invariants of finite-dimensional Lie group actions. |
Databáze: | OpenAIRE |
Externí odkaz: |