The Effective Dynamics of the Volume Preserving Mean Curvature Flow

Autor: Israel Michael Sigal, Grigorios Fournodavlos, Ilias Chenn
Rok vydání: 2018
Předmět:
Zdroj: Journal of Statistical Physics. 172:458-476
ISSN: 1572-9613
0022-4715
DOI: 10.1007/s10955-018-2041-x
Popis: We consider the dynamics of small closed submanifolds (‘bubbles’) under the volume preserving mean curvature flow. We construct a map from ( $$\text {n}+1$$ )-dimensional Euclidean space into a given ( $$\text {n}+1$$ )-dimensional Riemannian manifold which characterizes the existence, stability and dynamics of constant mean curvature submanifolds. This is done in terms of a reduced area function on the Euclidean space, which is given constructively and can be computed perturbatively. This allows us to derive adiabatic and effective dynamics of the bubbles. The results can be mapped by rescaling to the dynamics of fixed size bubbles in almost Euclidean Riemannian manifolds.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje