Biogenic Nanoparticles: Synthesis, Characterization, and Biological Potential of Gold Nanoparticles Synthesized using Lasiosiphon eriocephalus Decne Plant Extract

Autor: Kailas D. Datkhile, Pratik P. Durgawale, Shuvronil Chakraborty, Nilam J. Jagdale, Ashwini L. More, Satish R. Patil
Rok vydání: 2023
Předmět:
Zdroj: Pharmaceutical Nanotechnology. 11:303-314
ISSN: 2211-7385
Popis: Introduction: Recent advancements in biomedicine have revolutionized nanomedicine as a therapeutic moderator in the management of both infectious and noninfectious diseases. Purpose: In the current study we demonstrated biosynthesis of gold nanoparticles using aqueous leaf extract of Lasiosiphon eriocephalus as a capping and reducing agent and evaluation of their antioxidant, antibacterial, and anticancer properties. Methods: The biosynthesized LE-AuNPs were characterized by UV-Vis spectrophotometry, SEM, TEM, XRD, FTIR, DLS, and Zeta potential analysis. The antibacterial activity was checked by a minimum inhibitory concentration assay. The anticancer potential of biogenic LE-AuNPs was checked by cytotoxicity and genotoxicity assay against HeLa and HCT-15 cells. Results: The characteristic surface plasmon resonance peak of the colloidal solution at 538 nm by UV-Vis spectrum confirmed the formation of LE-AuNPs in the solution. The SEM, TEM, and XRD revealed 20-60 sized hexagonal and crystalline LE-AuNPs. The LE-AuNPs displayed significant inhibition potential against DPPH and ABTS radicals in vitro. The LE-AuNPs demonstrated significant antibacterial potential. The results of cytotoxicity interpreted that biogenic gold nanoparticles exhibited strong dose and time-dependent cytotoxicity effect against selected cancer cell lines where IC50 of LE-AuNPs required to inhibit the growth of HeLa cells after 24 h and 48 h exposure were 5.65± 0.69 μg/mL and 4.37±0.23 μg/mL respectively and that of HCT- 15 cells was 6.46 ± 0.69 μg/mL and 5.27 ± 0.34 μg/mL, 24h and 48h post-exposure respectively. Conclusions: Findings from this study revealed that gold nanoparticles synthesized using L. eriocephalus, showed remarkable antioxidant, antimicrobial, and extensive cytotoxicity and genotoxicity activities.
Databáze: OpenAIRE