Singlet and Triplet Energy Transfer in the Peridinin−Chlorophyll a−Protein from Amphidinium carterae

Autor: Roger G. Hiller, David J. Gosztola, Michael R. Wasielewski, Frank P. Sharples, Harry A. Frank, James A. Bautista
Rok vydání: 1999
Předmět:
Zdroj: The Journal of Physical Chemistry A. 103:2267-2273
ISSN: 1520-5215
1089-5639
DOI: 10.1021/jp983943f
Popis: The spectroscopic properties of peridinin in solution, and the efficiency and dynamics of energy transfer from peridinin to chlorophyll a in the peridinin-chlorophyll-protein (PCP) from Amphidinium carterae, were studied by steady-state absorption, fluorescence, fluorescence excitation, and fast transient optical spectroscopy. Steady-state measurements of singlet energy transfer from peridinin to chlorophyll revealed an 88 {+-} 2% efficiency. Fast-transient absorption experiments showed that the excited S{sub 1} state of peridinin decayed in 13.4 {+-} 0.6 ps in methanol and 3.1 {+-} 0.4 ps in the PCP complex after direct excitation of the carotenoid. The onset of the bleaching of the chlorophyll absorption band at 672 nm, signifying the arrival of the excitation from the carotenoid, occurred in 3.2 {+-} 0.3 ps. These data show that the primary route of energy transfer from peridinin to chlorophyll in the PCP complex is through the S{sub 1} state of peridinin. Nanosecond time-resolved transient optical spectroscopy revealed that chlorophyll triplet states are efficiently quenched by peridinin whose triplet state subsequently decays with a lifetime of 10 {+-} 1 {micro}s in the PCP complex. Close association between the peridinins and chlorophyll, which is clearly evident in the 3-D structure of the PCP complex, along with proper alignmentmore » of pigments and energy state matching are responsible for the high efficiencies of the photochemical processes.« less
Databáze: OpenAIRE