A Low Computational Complexity JPDA Filter With Superposition

Autor: Roy L. Streit, Robert Blair Angle, Murat Efe
Rok vydání: 2021
Předmět:
Zdroj: IEEE Signal Processing Letters. 28:1031-1035
ISSN: 1558-2361
1070-9908
DOI: 10.1109/lsp.2021.3082040
Popis: Object superposition is a way to derive Bayesian estimators for multiple object tracking using point processes. A low computational complexity Bayesian multiple target tracking filter, based on target superposition, is presented. The concept of superposition is introduced and applied to the well-known Joint Probabilistic Data Association (JPDA) filter to derive the JPDA with superposition (JPDAS) filter. The JPDAS intensity function is evaluated to machine precision “for free” by computing the generating functional of the posterior process using complex arithmetic. A simulated example with eight targets is presented.
Databáze: OpenAIRE