Membrane structure and radiation and hyperthermic damage

Autor: Mary A. Grummer, Milton B. Yatvin
Rok vydání: 1987
Předmět:
Zdroj: International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry. 30:351-364
ISSN: 1359-0197
DOI: 10.1016/1359-0197(87)90104-4
Popis: The general structure of the biological membrane and its involvement in cell damage from radiation and hyperthermic insults are discussed using bacterial cells as an example. Bacterial cells are useful models for these types of studies because they possess a simple membrane system whose composition can be readily altered. Also, various strains exist having different sensitivities to radiation and heat. For example, the response of Escherichia coli cells to ionizing radiation is found to be related to the degree of association between its DNA and membrane. Likewise, membrane lipids reportedly are important components in the cellular response to radiation. For example, radiation-induced lipid peroxidation leads to both structural and functional alterations in the membranes which must be considered to fully comprehend the biological effects of radiation. The physical state of the membrane during radiation exposure also is involved in the cellular response to radiation. Functional changes during radiation have been ascribed to changes in the protein component of the membrane. Other alterations which may play a role in radiation-induced cell damage include electrophoretic mobility of cells, membrane transport mechanisms, and membrane polysaccharide content. The cell membrane, particularly the lipid component, is an important target in hyperthermic cell killing. The composition and organization of the membrane lipids can influence a cell's response to heat. Heat-induced changes in membrane lipids lead to altered distribution of E. coli proteins, particularly their translocation to the outer membrane. These and other aspects are discussed in this review.
Databáze: OpenAIRE