Regularity of nonvanishing – at infinity or at the boundary – solutions of the defocusing nonlinear Schrödinger equation
Autor: | Nikos I. Karachalios, Ioannis G. Stratis, Nikolaos Gialelis |
---|---|
Rok vydání: | 2020 |
Předmět: |
Applied Mathematics
media_common.quotation_subject 010102 general mathematics Mathematical analysis Open set Boundary (topology) Infinity 01 natural sciences 010101 applied mathematics symbols.namesake Bounded function symbols 0101 mathematics Nonlinear Sciences::Pattern Formation and Solitons Nonlinear Schrödinger equation Analysis Mathematics media_common |
Zdroj: | Communications in Partial Differential Equations. 46:233-281 |
ISSN: | 1532-4133 0360-5302 |
Popis: | Considering the defocusing nonlinear Schrodinger equation (NLSE) in generic (bounded or unbounded) open sets U⊆Rn for n = 1, 2, and 3, we prove the regularity of weak, non-vanishing solutions at in... |
Databáze: | OpenAIRE |
Externí odkaz: |