Classification of minimal Lorentzian surfaces in $\mathbb S^4_2(1)$ with constant Gaussian and normal curvatures
Autor: | Dursun, U��ur, Turgay, Nurettin Cenk |
---|---|
Rok vydání: | 2015 |
Předmět: | |
DOI: | 10.48550/arxiv.1508.03824 |
Popis: | In this paper we consider Lorentzian surfaces in the 4-dimensional pseudo-Riemannian sphere $\mathbb S^4_2(1)$ with index 2 of curvature one. We obtain the complete classification of minimal Lorentzian surfaces $\mathbb S^4_2(1)$ whose Gaussian and normal curvatures are constants. We conclude that such surfaces have the Gaussian curvature $1/3$ and the absolute value of normal curvature $2/3$. We also give some explicit examples. Keywords. Gaussian curvature, minimal submanifolds, Lorentzian surfaces, normal curvature |
Databáze: | OpenAIRE |
Externí odkaz: |