Wavelet Frame Bijectivity on Lebesgue and Hardy Spaces
Autor: | H.-Q. Bui, Richard S. Laugesen |
---|---|
Rok vydání: | 2013 |
Předmět: |
Mathematics::Functional Analysis
Pure mathematics Kernel (set theory) Applied Mathematics General Mathematics Mathematical analysis Frame (networking) Mathematics::Classical Analysis and ODEs Mexican hat wavelet Wavelet transform Hardy space Lebesgue integration symbols.namesake Wavelet Operator (computer programming) symbols Analysis Mathematics |
Zdroj: | Journal of Fourier Analysis and Applications. 19:376-409 |
ISSN: | 1531-5851 1069-5869 |
DOI: | 10.1007/s00041-013-9268-3 |
Popis: | We prove a sufficient condition for frame-type wavelet series in L p , the Hardy space H 1, and BMO. For example, functions in these spaces are shown to have expansions in terms of the Mexican hat wavelet, thus giving a strong answer to an old question of Meyer. Bijectivity of the wavelet frame operator acting on Hardy space is established with the help of new frequency-domain estimates on the Calderon–Zygmund constants of the frame kernel. |
Databáze: | OpenAIRE |
Externí odkaz: |