Generalized orthogonality equations in finite-dimensional normed spaces
Autor: | Karol Gryszka, Paweł Wójcik |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Annals of Functional Analysis. 14 |
ISSN: | 2008-8752 2639-7390 |
DOI: | 10.1007/s43034-023-00264-2 |
Popis: | Let X, Y be real normed spaces and let $$\rho '_+$$ ρ + ′ , $$\rho '_-$$ ρ - ′ be norm derivatives. In this work, we solve a system of functional equations $$\begin{aligned} {\left\{ \begin{array}{ll}\rho '_+(f(x),f(y))=g(x)\rho '_+(x,y),\\ \rho '_-(f(x),f(y))=g(x)\rho '_-(x,y), \end{array}\right. } \end{aligned}$$ ρ + ′ ( f ( x ) , f ( y ) ) = g ( x ) ρ + ′ ( x , y ) , ρ - ′ ( f ( x ) , f ( y ) ) = g ( x ) ρ - ′ ( x , y ) , with unknown functions $$f:X\!\rightarrow \!Y$$ f : X → Y , $$g:X\rightarrow \mathbb {R}$$ g : X → R . Moreover, we give partial answer to open problem posed in 2010. |
Databáze: | OpenAIRE |
Externí odkaz: |