Biomolecularly capped uniformly sized nanocrystalline materials: glutathione-capped ZnS nanocrystals
Autor: | Claudia L. Torres-Martínez, Krassimir N. Bozhilov, Liem Nguyen, Weon Bae, Victor I. Klimov, Richard Kho, Rajesh K. Mehra |
---|---|
Rok vydání: | 1999 |
Předmět: |
Materials science
Mechanical Engineering Inorganic chemistry Bioengineering General Chemistry Photochemistry Nanocrystalline material Electron diffraction Nanocrystal Mechanics of Materials Transmission electron microscopy Quantum dot Photocatalysis General Materials Science Phytochelatin Electrical and Electronic Engineering High-resolution transmission electron microscopy |
Zdroj: | Nanotechnology. 10:340-354 |
ISSN: | 1361-6528 0957-4484 |
DOI: | 10.1088/0957-4484/10/3/319 |
Popis: | Micro-organisms such as bacteria and yeasts form CdS to detoxify toxic cadmium ions. Frequently, CdS particles formed in yeasts and bacteria were found to be associated with specific biomolecules. It was later determined that these biomolecules were present at the surface of CdS. This coating caused a restriction in the growth of CdS particles and resulted in the formation of nanometre-sized semiconductors (NCs) that exhibited typical quantum confinement properties. Glutathione and related phytochelatin peptides were shown to be the biomolecules that capped CdS nanocrystallites synthesized by yeasts Candida glabrata and Schizosaccharomyces pombe. Although early studies showed the existence of specific biochemical pathways for the synthesis of biomolecularly capped CdS NCs, these NCs could be formed in vitro under appropriate conditions. We have recently shown that cysteine and cysteine-containing peptides such as glutathione and phytochelatins can be used in vitro to dictate the formation of discrete sizes of CdS and ZnS nanocrystals. We have evolved protocols for the synthesis of ZnS or CdS nanocrystals within a narrow size distribution range. These procedures involve three steps: (1) formation of metallo-complexes of cysteine or cysteine-containing peptides, (2) introduction of stoichiometric amounts of inorganic sulfide into the metallo-complexes to initiate the formation of nanocrystallites and finally (3) size-selective precipitation of NCs with ethanol in the presence of Na+. The resulting NCs were characterized by optical spectroscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction and electron diffraction. HRTEM showed that the diameter of the ZnS-glutathione nanocrystals was 3.45?0.5 nm. X-ray diffraction and electron diffraction analyses indicated ZnS-glutathione to be hexagonal. Photocatalytic studies suggest that glutathione-capped ZnS nanocrystals prepared by our procedure are highly efficient in degrading a test model compound. |
Databáze: | OpenAIRE |
Externí odkaz: |