Popis: |
At Aspo Hard Rock Laboratory a full scale test of the Swedish concept for disposal of nuclear waste (KBS-3V) is in progress. The Prototype Repository project consists of two sections. The installation of the first section was made during summer and autumn 2001 and the second section during spring and summer 2003. Section 1 consists of four full-scale deposition holes, copper canisters equipped with electrical heaters, bentonite buffer consisting of blocks and pellets and a deposition tunnel backfilled with a mixture of bentonite and crushed rock, ending with a concrete plug. Section 2 consists of two full-scale deposition holes with a backfilled tunnel section and ends also with a concrete plug. Altogether 84 large bentonite blocks, with a total weight of about 130 tons, were installed and more than 2000 tons of backfill material were mixed and compacted in situ. Earlier developed techniques for both manufacturing and installing the buffer and the backfill were used in the project. Measurements and data from the installation allow calculations of the expected density in the buffer and in different parts of the backfill. The bentonite buffer in deposition holes 1, 3, 5 and 6, the backfill and the surrounding rock are instrumented with gauges for measuring temperature, water pressure, total pressure, relative humidity, resistivity, canister displacement and rock stresses. The instruments are connected to data acquisition systems by cables protected by tubes. These tubes are led through the rock in watertight lead-throughs to a nearby tunnel where the data acquisition systems are situated. More than 1100 transducers have been installed in the rock, buffer and the backfill. The technique for protecting the transducers from high water and swelling pressure was developed in this and preceding projects and furthermore different designs of transducers are used for the same type of measurement in order to compare their behaviour. The deposition holes have different water inflow rates (from 0.0007 to 0.08 l/min), resulting in different water uptake rates of the buffer. The water ratio as a function of time for different parts of the buffer can be estimated from measurement of the relative humidity in the pore system of the buffer. Deposition hole 1 with a relatively high water inflow (0.08 l/min), shows in some parts of the buffer very high degree of saturation while the drier holes 2, 3, 4, 5 and 6 (0.0007–0.003 l/min) show a very slow saturation rate in most parts of the buffer. The temperature in the buffer and on the surface of the canisters is carefully studied. The temperature measurements indicate a rather large drop in temperature (approx. 10 °C) over the 10 mm gap between the canister and the buffer. In deposition hole 1 the gap has vanished due to high degree of saturation, resulting in a lower temperature on the surface of the canister. The displacement of the canisters in deposition holes 3 and 6 has been measured continuously with six transducers in each deposition hole. The measurement allows calculation of the displacement of the canisters in all three directions. The maximum measured vertical displacement so far is about 8 mm upwards. The water uptake in the backfill is measured continuously with soil psychrometers. The results indicate a high degree of saturation close to the rock wall and on top of the buffer in the deposition holes, while the backfill in the more central part of tunnel shows slow increase in water ratio over the time. Transducers for measuring suction in the rock (soil psychrometers) have been installed very close to the surface of one of the deposition holes. The transducers are measuring rather high suctions close to the rock surface, indicating a not fully saturated pore system of the rock. The paper describes the following items: the test design, the installation phase, example of measurements made during the water uptake and some preliminary evaluations of water uptake of both the buffer and backfill up to November 1, 2004. The paper is mainly focused on the engineered barriers. |