On $r$ -th Root Extraction Algorithm in $\mathbb {F}_q$ for $q\equiv lr^{s}+1\;({\mathrm mod}\; r^{s+1})$ with $0< l< r$ and Small $s$

Autor: Gook Hwa Cho, Soonhak Kwon, Namhun Koo
Rok vydání: 2016
Předmět:
Zdroj: IEEE Transactions on Computers. 65:322-325
ISSN: 0018-9340
DOI: 10.1109/tc.2015.2417562
Popis: We present an $r$ -th root extraction algorithm over a finite field $\mathbb {F}_q$ . Our algorithm precomputes a primitive $r^s$ -th root of unity $\xi$ where $s$ is the largest positive integer satisfying $r^s| q-1$ , and is applicable for the cases when $s$ is small. The proposed algorithm requires one exponentiation for the $r$ -th root computation and is favorably compared to the existing algorithms.
Databáze: OpenAIRE