Eigenvalue spacing for 1D singular Schrödinger operators
Autor: | Luc Hillairet, Jeremy L. Marzuola |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Asymptotic Analysis. 133:267-289 |
ISSN: | 1875-8576 0921-7134 |
DOI: | 10.3233/asy-221814 |
Popis: | The aim of this paper is to provide uniform estimates for the eigenvalue spacing of one-dimensional semiclassical Schrödinger operators with singular potentials on the half-line. We introduce a new development of semiclassical measures related to families of Schrödinger operators that provides a means of establishing uniform non-concentration estimates within that class of operators. This dramatically simplifies analysis that would typically require detailed WKB expansions near the turning point, near the singular point and several gluing type results to connect various regions in the domain. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |