Eigenvalue spacing for 1D singular Schrödinger operators

Autor: Luc Hillairet, Jeremy L. Marzuola
Rok vydání: 2023
Předmět:
Zdroj: Asymptotic Analysis. 133:267-289
ISSN: 1875-8576
0921-7134
DOI: 10.3233/asy-221814
Popis: The aim of this paper is to provide uniform estimates for the eigenvalue spacing of one-dimensional semiclassical Schrödinger operators with singular potentials on the half-line. We introduce a new development of semiclassical measures related to families of Schrödinger operators that provides a means of establishing uniform non-concentration estimates within that class of operators. This dramatically simplifies analysis that would typically require detailed WKB expansions near the turning point, near the singular point and several gluing type results to connect various regions in the domain.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje