Autor: |
Robert J. DeCoursey, Patricia L. Lucker, Sudha Natarajan, Mary Beth Wusk, William H. Hunt, Ron Verhappen |
Rok vydání: |
2005 |
Předmět: |
|
Zdroj: |
SPIE Proceedings. |
ISSN: |
0277-786X |
Popis: |
The CALIPSO (Cloud Aerosol LIDAR Infrared Pathfinder Satellite Observations) satellite is due to launch from Vandenberg AFB aboard a Delta rocket in April of 2005. CALIPSO is an international mission consisting of NASA, Ball Aerospace and the French space agency CNES. Onboard CALIPSO are three instruments, a two wavelength/two polarization lidar, an Infrared radiometer and a wide field camera. This paper will focus on the software design, development and functionality of the lidar systems including the transmitter and receiver as well as the planned operations paradigm. The operations paradigm simply stated is this: command the payload once a week with all commands being time-tagged, and receive and process health and status from the payload four (4) times per day. Science data totaling over 5 gigabytes a day is down-linked once every 24 hours. A modular approach was used in the design of the flight software where the executable code is separated into 8 loadable modules and the configuration of the individual instruments is accomplished via several loadable tables. This design scheme allows for manageable updates to the executable image and allows the science team to change and experiment with instrument configuration on an as needed basis without over stressing the command uplink system. Redundant copies of all nominal executable image files are kept onboard as is a maintenance image. The Onboard Fault Detection Isolation and Recovery (FDIR) system insures the safety of the payload and all instruments. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|