Clinical evaluation of laser bleaching vs. conventional in-office bleaching

Autor: Muruppel Alex Mathews, Rajeev Milen Mariam, N Dinesh, S Sudeep
Rok vydání: 2013
Předmět:
Zdroj: Journal of Dental Lasers. 7:54
ISSN: 0976-2868
Popis: Aims and Objectives: The purpose of this study was to objectively evaluate and compare the clinical efficacy of an in-office bleaching system using a titanium dioxide impregnated bleaching gel in conjunction with an 810 nm diode laser as opposed to a conventional in-office bleaching system. Settings and Design: The study was conducted in the Department of Prosthodontics, PMS College of Dental Science and Research, Vattapara. The study is an observational study of experimental design. Materials and Methods: Ten subjects were screened based on the inclusion and exclusion criteria. Resin dam was applied onto the gums and the teeth are isolated. Opalescence boost bleach gel is applied onto two quadrants of each patient, one with titanium dioxide and exposed to 810 nm GaAlAs diode laser and the other quadrant with conventional in-office bleaching using the same agent in trays. Comparison and assessment of degree of whitening between quadrants (and thereby techniques) was done using a Vita Shade guide. The dentinal hypersensitivity was assessed by means of air stimulus. Statistical Analysis Used: Non-parametric test (Wilcoxon signed test), was used to compare the effect of laser bleaching and conventional in-office bleaching based on visual analog score (VAS) score. To compare the shade difference McNemar test was used. Results: Statistically significant value, Z = 2.831 was obtained which proved that laser bleaching had significantly less sensitivity compared to conventional in office bleaching. McNemar test obtained a P value 1, showed that there is absolutely no difference in the brightness obtained by both laser bleaching and conventional in-office bleaching. Conclusions: Laser energy is able to effect physicochemical changes in enamel this is affected by crystalline changes within hydroxyapatite crystal and by the removal of the organic content or carbonate in the intercrystalline areas. Such changes also protect against the harmful effects due to extensive penetration of hydroxyapatite. Diode laser 810 nm has been shown to have effected such changes in bleaching settings.
Databáze: OpenAIRE