SOME RESULTS ON ENTROPY AND SEQUENCE ENTROPY

Autor: Francisco Balibrea, V. Jiménez López, J. S. Cánovas Peña
Rok vydání: 1999
Předmět:
Zdroj: International Journal of Bifurcation and Chaos. :1731-1742
ISSN: 1793-6551
0218-1274
DOI: 10.1142/s0218127499001218
Popis: In this paper we study some formulas involving metric and topological entropy and sequence entropy. We summarize some classical formulas satisfied by metric and topological entropy and ask the question whether the same or similar results hold for sequence entropy. In general the answer is negative; still some questions involving these formulas remain open. We make a special emphasis on the commutativity formula for topological entropy h(f ◦ g)=h(g ◦ f) recently proved by Kolyada and Snoha. We give a new elementary proof and use similar ideas to prove commutativity formulas for metric entropy and other topological invariants. Finally we prove a Misiurewicz–Szlenk type inequality for topological sequence entropy for piecewise monotone maps on the interval I=[0, 1]. For this purpose we introduce the notion of upper entropy.
Databáze: OpenAIRE