Boosting the accuracy of differentially private histograms through consistency

Autor: Michael Hay, Vibhor Rastogi, Dan Suciu, Gerome Miklau
Rok vydání: 2010
Předmět:
Zdroj: Proceedings of the VLDB Endowment. 3:1021-1032
ISSN: 2150-8097
DOI: 10.14778/1920841.1920970
Popis: We show that it is possible to significantly improve the accuracy of a general class of histogram queries while satisfying differential privacy. Our approach carefully chooses a set of queries to evaluate, and then exploits consistency constraints that should hold over the noisy output. In a post-processing phase, we compute the consistent input most likely to have produced the noisy output. The final output is differentially-private and consistent, but in addition, it is often much more accurate. We show, both theoretically and experimentally, that these techniques can be used for estimating the degree sequence of a graph very precisely, and for computing a histogram that can support arbitrary range queries accurately.
Databáze: OpenAIRE