Synthesis of ZnO Nanosheets Morphology by Ce Doping for Photocatalytic Activity
Autor: | G. Vijayaprasath, P. Soundarrajan, Ganesan Ravi |
---|---|
Rok vydání: | 2018 |
Předmět: |
010302 applied physics
Materials science Photoluminescence Doping chemistry.chemical_element 02 engineering and technology 021001 nanoscience & nanotechnology Condensed Matter Physics 01 natural sciences Electronic Optical and Magnetic Materials Field electron emission Cerium chemistry Chemical engineering 0103 physical sciences Materials Chemistry Photocatalysis Electrical and Electronic Engineering 0210 nano-technology Nanosheet Diffractometer Wurtzite crystal structure |
Zdroj: | Journal of Electronic Materials. 48:684-695 |
ISSN: | 1543-186X 0361-5235 |
DOI: | 10.1007/s11664-018-6763-y |
Popis: | Pure and gradient amounts of cerium (Ce)-doped zinc oxide (ZnO) were synthesized by a co-precipitation method and then their photocatalytic activities were inspected. X-ray diffractometer patterns of the pure and Cedoped ZnO nanostructures exhibit hexagonal wurtzite crystal structure. Field emission scanning electron microscopic images show that the ZnO nanospindel morphology is changed into two-dimensional (2D) polar surface-oriented nanosheets by a cerium doping level up to 0.06 mol.%. The red-shift in the near band edge emission and strong defect states emissions (blue and green) are observed in ZnO with respect to the Ce doping level. From the detailed photocatalytic experiments, the maximum methylene blue dye degradation, 86.9%, is observed on the 0.06 mol.% Ce-doped ZnO photocatalyst. The eventual conclusion is that the edges of the (001) crystallographic facet attach to each other to form a ZnO nanosheet morphology at a specific ratio of Ce doping that serves as a good photocatalyst for methylene blue dye degradation. |
Databáze: | OpenAIRE |
Externí odkaz: |