Popis: |
Experimental data-based parameter search for Hodgkin–Huxley-style (HH) neuron models is a major challenge for neuroscientists and neuroengineers. Current search strategies are often computationally expensive, are slow to converge, have difficulty handling nonlinearities or multimodalities in the objective function, or require good initial parameter guesses. Most important, many existing approaches lack quantification of uncertainties in parameter estimates even though such uncertainties are of immense biological significance. We propose a novel method for parameter inference and uncertainty quantification in a Bayesian framework using the Markov chain Monte Carlo (MCMC) approach. This approach incorporates prior knowledge about model parameters (as probability distributions) and aims to map the prior to a posterior distribution of parameters informed by both the model and the data. Furthermore, using the adaptive parallel tempering strategy for MCMC, we tackle the highly nonlinear, noisy, and multimodal loss function, which depends on the HH neuron model. We tested the robustness of our approach using the voltage trace data generated from a 9-parameter HH model using five levels of injected currents (0.0, 0.1, 0.2, 0.3, and 0.4 nA). Each test consisted of running the ground truth with its respective currents to estimate the model parameters. To simulate the condition for fitting a frequency-current (F-I) curve, we also introduced an aggregate objective that runs MCMC against all five levels simultaneously. We found that MCMC was able to produce many solutions with acceptable loss values (e.g., for 0.0 nA, 889 solutions were within 0.5% of the best solution and 1,595 solutions within 1% of the best solution). Thus, an adaptive parallel tempering MCMC search provides a “landscape” of the possible parameter sets with acceptable loss values in a tractable manner. Our approach is able to obtain an intelligently sampled global view of the solution distributions within a search range in a single computation. Additionally, the advantage of uncertainty quantification allows for exploration of further solution spaces, which can serve to better inform future experiments. |