Cross-Layer Noise Analysis in Smart Digital Pixel Sensors With Integrated Deep Neural Network

Autor: Mandovi Mukherjee, Saibal Mukhopadhyay, Priyabrata Saha, Minah Lee, Edward Lee, Taesik Na, Mohammad Faisal Amir
Rok vydání: 2020
Předmět:
Zdroj: IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 10:444-457
ISSN: 2156-3365
2156-3357
DOI: 10.1109/jetcas.2020.3031869
Popis: Digital pixel based image sensors with embedded deep neural network (DNN) allow many mission critical surveillance applications. However, image noise caused by variations and non-idealities in the sensor aggravates the quality of image and further degrades the performance of a DNN. We propose a digital pixel-DNN cross-layer simulation methodology for accurate training and evaluation of a DNN under image noise induced from sensors. In particular, this paper focuses on the image noise derived from device mismatches in digital pixel circuits with 3D integrated and pixel-parallel readout circuits, and studies the effect of the resulting image noise on the accuracy of a DNN. The simulation results show that the device mismatch in the digital pixel creates distinct noise structure on output image and should be accurately considered while training a DNN. We also present design space explorations using our cross-layer simulation.
Databáze: OpenAIRE