Diagnostics of data outliers using subspace identification
Autor: | Jaafar AlMutawa |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | MIM |
ISSN: | 1474-6670 |
DOI: | 10.3182/20130619-3-ru-3018.00598 |
Popis: | We propose a diagnostics technique for the state space model fitting formed by deleting observations from the data and measuring the change in the estimates of the parameters. A method is proposed for distinguishing an observational outlier from an innovational one. The presented subspace system identification algorithm is robust and less sensitive to outliers. We give a numerical result to show effectiveness of the proposed method. |
Databáze: | OpenAIRE |
Externí odkaz: |