A graphical model for audiovisual object tracking
Autor: | Hagai Attias, Matthew J. Beal, Nebojsa Jojic |
---|---|
Rok vydání: | 2003 |
Předmět: |
Calibration (statistics)
business.industry Computer science Applied Mathematics Bayesian inference Object (computer science) Computer graphics Computational Theory and Mathematics Artificial Intelligence Video tracking Pattern recognition (psychology) Expectation–maximization algorithm Computer vision Computer Vision and Pattern Recognition Graphical model Artificial intelligence business Software |
Zdroj: | IEEE Transactions on Pattern Analysis and Machine Intelligence. 25:828-836 |
ISSN: | 0162-8828 |
DOI: | 10.1109/tpami.2003.1206512 |
Popis: | We present a new approach to modeling and processing multimedia data. This approach is based on graphical models that combine audio and video variables. We demonstrate it by developing a new algorithm for tracking a moving object in a cluttered, noisy scene using two microphones and a camera. Our model uses unobserved variables to describe the data in terms of the process that generates them. It is therefore able to capture and exploit the statistical structure of the audio and video data separately, as well as their mutual dependencies. Model parameters are learned from data via an EM algorithm, and automatic calibration is performed as part of this procedure. Tracking is done by Bayesian inference of the object location from data. We demonstrate successful performance on multimedia clips captured in real world scenarios using off-the-shelf equipment. |
Databáze: | OpenAIRE |
Externí odkaz: |