A novel polymer technology for underfill

Autor: Osamu Suzuki, Toshiyuki Sato, David Y. Son, Paul Czubarow
Rok vydání: 2012
Předmět:
Zdroj: MRS Proceedings. 1428
ISSN: 1946-4274
0272-9172
DOI: 10.1557/opl.2012.1360
Popis: Capillary type underfill is still the mainstream underfill for mass production flip chip applications. Flip chip packages are migrating to ultra low-k, Pb-free, 3D and fine pitch packages. Underfill selection is becoming more critical. This paper discusses the performance and potential of underfills using a novel organic-inorganic hybrid polymer technology.Compared to eutectic and high lead solder, tin-silver-copper solder has lower C.T.E., higher elasticity and greater brittleness. In light of these properties, it is generally better to select high Tg and lower CTE underfill in order to prevent bump fatigue during reliability testing. Given the brittleness of low-k dielectric layers of flip chips, the destruction of low-k layers by stress inside the flip chip packages has become a major issue. Underfills for low-k packages should have low stress, and the warpage should be small. It is expected that as the low-k trend expands, the underfill is required to provide less stress. Low Tg underfill shows lower warpage. New chemical technologies have been developed to address the needs of underfills for low-k/Pb-free flip chip packages, specifically organic-inorganic hybrid polymer compounds. The organic-inorganic hybrid polymer provides excellent cure properties which enable a balanced combination of low stress and good bump protection. The material properties of the underfill were characterized using Differential Scanning Calorimetry (DSC), Thermo-Mechanical Analysis (TMA), and Dynamic Mechanical Analysis (DMA). A daisy-chained test vehicle was used for reliability testing. A detailed study is presented on the underfill properties, reliability data, as well as finite element modeling results.
Databáze: OpenAIRE