Realization of an Electrically Tunable Narrow-Bandwidth Atomically Thin Mirror Using Monolayer MoSe2

Autor: Aroosa Ijaz, Sina Zeytinoglu, Patrick Back, Martin Kroner, Atac Imamoglu
Rok vydání: 2018
Předmět:
Zdroj: Physical Review Letters. 120
ISSN: 1079-7114
0031-9007
DOI: 10.1103/physrevlett.120.037401
Popis: The advent of two-dimensional semiconductors, such as van der Waals heterostructures, propels new research directions in condensed matter physics and enables development of novel devices with unique functionalities. Here, we show experimentally that a monolayer of MoSe_{2} embedded in a charge controlled heterostructure can be used to realize an electrically tunable atomically thin mirror, which effects 87% extinction of an incident field that is resonant with its exciton transition. The corresponding maximum reflection coefficient of 41% is only limited by the ratio of the radiative decay rate to the nonradiative linewidth of exciton transition and is independent of incident light intensity up to 400 W/cm^{2}. We demonstrate that the reflectivity of the mirror can be drastically modified by applying a gate voltage that modifies the monolayer charge density. Our findings could find applications ranging from fast programable spatial light modulators to suspended ultralight mirrors for optomechanical devices.
Databáze: OpenAIRE