Overpartitions and ternary quadratic forms

Autor: Xinhua Xiong
Rok vydání: 2016
Předmět:
Zdroj: The Ramanujan Journal. 42:429-442
ISSN: 1572-9303
1382-4090
DOI: 10.1007/s11139-016-9773-5
Popis: Let \(\overline{p}(n)\) denote the number of overpartitions of n. Recently, Mahlburg showed that \(\overline{p}(n) \equiv 0 \pmod {64}\) and Kim showed that \(\overline{p}(n) \equiv 0 \pmod {128}\) for almost all integers n. In this paper, with the help of some ternary quadratic forms, we prove that \(\overline{p}(n) \equiv 0 \pmod {256}\) for almost all integers n, which was conjectured by Mahlburg.
Databáze: OpenAIRE