New exact solutions to the generalized KdV equation with generalized evolution
Autor: | Yongan Xie, Shengqiang Tang, Dahe Feng |
---|---|
Rok vydání: | 2012 |
Předmět: |
Class (set theory)
symbols.namesake Nonlinear Sciences::Exactly Solvable and Integrable Systems Transformation (function) Jacobian matrix and determinant Mathematics::Analysis of PDEs symbols Elliptic function General Physics and Astronomy Korteweg–de Vries equation Nonlinear Sciences::Pattern Formation and Solitons Mathematical physics Mathematics |
Zdroj: | Pramana. 78:499-511 |
ISSN: | 0973-7111 0304-4289 |
DOI: | 10.1007/s12043-012-0262-0 |
Popis: | In this paper, by using a transformation and an application of Fan subequation, we study a class of generalized Korteweg–de Vries (KdV) equation with generalized evolution. As a result, more types of exact solutions to the generalized KdV equation with generalized evolution are obtained, which include more general single-hump solitons, multihump solitons, kink solutions and Jacobian elliptic function solutions with double periods. |
Databáze: | OpenAIRE |
Externí odkaz: |