Hardware for hidden Markov-model-based, large-vocabulary real-time speech recognition

Autor: M. Weintraub, H. Murveit, J. Mankoski, G. Chen
Rok vydání: 1990
Předmět:
Zdroj: HLT
DOI: 10.3115/116580.116611
Popis: SRI and U.C. Berkeley have begun a cooperative effort to develop a new architecture for real-time implementation of spoken language systems (SLS). Our goal is to develop fast speech recognition algorithms, and supporting hardware capable of recognizing continuous speech from a bigram- or trigram-based 20,000-word vocabulary or a 1,000- to 5,000-word SLS.
Databáze: OpenAIRE