Popis: |
Nanostructured HoFeO3 perovskite was successfully prepared via co-precipitation of Fe3+ and Ho3+ ions in ethanol, followed by heat treatment. Analysis revealed the orthorhombic structure, uniaxial orientation, and nanograin size. This anode material exhibited excellent electrochemical properties in lithium-ion batteries including high capacity retention and Coulombic efficiency, good cyclability, low charge transfer, high Li+ diffusion coefficient, and excellent rate performance. They delivered reversible capacity of 437 mAh g-1 after 120 cycles at current density of 0.1 A g-1, a charge capacity of 299 mAh g-1 even at high current density of 10 A g-1. Outstanding performance can be ascribed to unique nanostructured perovskite. Nanosized materials offer a larger electrode/electrolyte interface, and reduce Li-ion diffusion length, improving reaction kinetics. Perovskite structure effectively prevented anode degradation during cycling, demonstrating excellent reversible storage. Kinetics of electrochemical reactions were also studied. All indicate the great potential of HoFeO3 perovskite as an anode material in LIBs. |