Neural networks based neutron emissivity tomography at JET with real-time capabilities

Autor: M. Weiszflog, Carl Hellesen, E. Ronchi, M. Gatu Johnson, Henrik Sjöstrand, E. Andersson Sundén, Göran Ericsson, Sean Conroy
Rok vydání: 2010
Předmět:
Zdroj: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 613:295-303
ISSN: 0168-9002
DOI: 10.1016/j.nima.2009.12.023
Popis: Tomographic reconstruction techniques typically require computationally intensive algorithms which are not suitable for real-time application. This paper describes a framework to perform neutron emissivity tomography at the Joint European Torus (JET) using neural networks with successful results over a broad range of magnetic configurations, heating and fueling schemes. Application times in the μ s time scale allows for real-time applicability of the method.
Databáze: OpenAIRE