Detecting Missing Translations in Neural Machine Translation Using Information Quantity in Sentences

Autor: Jing Bai, Hiroyuki Shinnou, Wen Ma, Shin Fujii, Rui Cao
Rok vydání: 2019
Předmět:
Zdroj: TAAI
DOI: 10.1109/taai48200.2019.8959850
Popis: This study attempts a method based on the information quantity in the source sentence, for detecting missing translations in neural machine translation. It assumes the necessary information quantity for the sentence as a whole, based on the word information quantity in the source sentence and, in the same way, detects missing translations by making a comparison with the presumed target sentence information quantity.
Databáze: OpenAIRE