Łojasiewicz Inequalities for Mean Convex Self-Shrinkers
Autor: | Jonathan J Zhu |
---|---|
Rok vydání: | 2021 |
Předmět: |
0209 industrial biotechnology
Pure mathematics Inequality General Mathematics media_common.quotation_subject 010102 general mathematics Regular polygon 02 engineering and technology 01 natural sciences 020901 industrial engineering & automation Mathematics::Differential Geometry 0101 mathematics Mathematics media_common |
Zdroj: | International Mathematics Research Notices. 2023:1236-1254 |
ISSN: | 1687-0247 1073-7928 |
DOI: | 10.1093/imrn/rnab287 |
Popis: | We prove Łojasiewicz inequalities for round cylinders and cylinders over Abresch–Langer curves, using perturbative analysis of a quantity introduced by Colding–Minicozzi. A feature is that this auxiliary quantity allows us to work essentially at 1st order. This new method interpolates between the higher-order perturbative analysis used by the author for certain shrinking cylinders and the differential geometric method used by Colding–Minicozzi for the round case. |
Databáze: | OpenAIRE |
Externí odkaz: |