Mixed dynamics of 2-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies

Autor: J. Tomás Lázaro, Marina Gonchenko, Sergey Gonchenko, Amadeu Delshams
Rok vydání: 2018
Předmět:
Zdroj: Discrete & Continuous Dynamical Systems - A. 38:4483-4507
ISSN: 1553-5231
DOI: 10.3934/dcds.2018196
Popis: We study dynamics and bifurcations of 2-dimensional reversible maps having a symmetric saddle fixed point with an asymmetric pair of nontransversal homoclinic orbits (a symmetric nontransversal homoclinic figure-8). We consider one-parameter families of reversible maps unfolding the initial homoclinic tangency and prove the existence of infinitely many sequences (cascades) of bifurcations related to the birth of asymptotically stable, unstable and elliptic periodic orbits.
Databáze: OpenAIRE