Local atomic structure and Ni nanophase segregation in Zn1-xNixS thin films

Autor: Juan A. Hoy-Benítez, Juan S. Lezama-Pacheco, Roberto A. Colina-Ruiz, Jose Mustre de Leon, Francisco J. Espinosa-Faller
Rok vydání: 2021
Předmět:
Zdroj: Journal of Alloys and Compounds. 854:157258
ISSN: 0925-8388
DOI: 10.1016/j.jallcom.2020.157258
Popis: The local atomic structure of Zn1-xNixS thin films was investigated using X-ray absorption spectroscopy. The films were grown using RF-sputtering at atomic concentrations x = 0.00, x = 0.04, x = 0.08 and x = 0.14. X-ray diffraction shows that the lattice parameter contracts with increasing Ni concentration, consistent with the smaller atomic radii of Ni compared to that one of Zn. Optical absorption reveals a reduction of the bandgap as Ni concentration increases, except for sample x = 0.14 where a complex behavior is observed. Results from X-ray absorption near edge structure (XANES) spectroscopy indicate a shift in the valence state of Ni for the x = 0.14 sample. The analysis of the extended X-ray absorption fine structure (EXAFS) spectra indicate a contraction of ∼0.7 A in the Ni–S bond distance when compared to the Zn–S bond length, which generates local lattice distortions and an increment of the static disorder as the Ni concentration increases. The EXAFS results for sample x = 0.14 show the presence of a Zn1-xNixS phase and a nanoscopic metallic Ni phase with domain sizes below the diffraction limit. These results reveal that the local atomic structure differs in a significant manner from the average crystalline structure, implying its importance for the determination of the electronic properties of this material.
Databáze: OpenAIRE