Synthesis of carbon nanotubes from acetone
Autor: | M. A. Smykov, A. V. Shuklinov, E. Yu. Filatova, R. A. Stolyarov, A. G. Tkachov, A. V. Melezhik, I. S. Larionova |
---|---|
Rok vydání: | 2013 |
Předmět: |
Thermogravimetric analysis
Materials science General Chemical Engineering Thermal decomposition chemistry.chemical_element General Chemistry Carbon nanotube Catalysis law.invention chemistry.chemical_compound chemistry Chemical engineering law Yield (chemistry) Acetone Organic chemistry Pyrolysis Carbon |
Zdroj: | Theoretical Foundations of Chemical Engineering. 47:435-443 |
ISSN: | 1608-3431 0040-5795 |
DOI: | 10.1134/s0040579513040131 |
Popis: | The process of synthesizing carbon nanotubes (CNTs) using the method of catalytic gas-phase pyrolysis has been studied using acetone as a source of carbon. CNTs with outer diameters of 8–10 nm were prepared. The highest yield of the CNTs with the best quality is achieved when (Co, Mo)/MgO-Al2O3 catalyst is used. When (Fe, Co, Mo)/Al2O3 is used, the yield and quality of CNTs are lower. For comparison, CNTs obtained on the same catalysts but with propylene as the source of carbon have been investigated. It has been shown that, in this case, the best yield is achieved if (Fe, Co, Mo)/Al2O3 catalyst is used. According to the thermogravimetric data, CNT prepared at optimal conditions from acetone have fewer structural defects than those prepared from polypropylene. The optimal temperature and concentration conditions of the CNT synthesis from acetone have been determined. Based on the kinetic data, it has been assumed that the growth of CNTs takes place due to the ketene formed under the thermal decomposition of acetone. The ecological aspects of the CNT preparation from hydrocarbons and acetone are considered. |
Databáze: | OpenAIRE |
Externí odkaz: |