Almost everywhere convergence of Cesàro means of two variable Walsh – Fourier series with varying parameteres
Autor: | György Gát, A. A. Abu Joudeh |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Ukrains’kyi Matematychnyi Zhurnal. 73:291-307 |
ISSN: | 1027-3190 |
DOI: | 10.37863/umzh.v73i3.196 |
Popis: | UDC 517.5 We prove that the maximal operator of some $(C , \beta_{n})$ means of cubical partial sums of two variable Walsh – Fourier series of integrable functions is of weak type $(L_1,L_1)$. Moreover, the $ (C , \beta_{n})$-means $\sigma_{2^n}^{\beta_{n}} f$ of the function $ f \in L_{1} $ converge a.e. to $f$ for $ f \in L_{1}(I^2) $, where $I$ is the Walsh group for some sequences $1> \beta_n\searrow 0$. |
Databáze: | OpenAIRE |
Externí odkaz: |